CLPF and CLPFT Series

Femtosecond Pulsed Cr:Zn/Se/S Mid-IR Lasers

CLPF Cr:ZnSe/S ultrafast oscillators provide up to 20 fs pulses at a customer selected fixed wavelength in the range of 2.1-2.6 μm at 80-500 MHz pulse repetition rate. Both fixed frequency and tunable models are available. The Kerr-lens mode-locked optical head is pumped by IPG’s efficient and reliable CW erbium fiber laser. CLPF Series models with extended output power, wavelength range, automated wavelength tuning, and synchronization to an external clock or another oscillator are offered as an option. Other options, such as CEP stabilization option are coming soon. CLPF lasers address a wide range of scientific and biomedical applications. Please discuss your needs with an IPG Photonics' representative.



Custom Fixed Central Wavelength Power and Energy Amplifiers
Wavelength Tuning Option Beam Quality M2 <1.2
Pulse Duration Down to Two Optical Cycles RF Output Monitoring Option
Output Power up to 20 W SHG Option up to 0.5 W
Master-slave Piezo Synchronization Option
  CLPF-2400-15-50-1 CLPF-2400-80-30-6-PA  CLPF-2400-10000-30-0.01-EA
Central Wavelength Range*, nm  2100-2600, typ. 2400 
Spectral Bandwidth FWHM, nm 50-300  50-600 1000-1700
Average Power, W >1 >6** 0.01
Pulse Energy, nJ 10-20 60-100 10,000
Repetition Rate***, MHz  80-500 80-500 0.001
Pulse Energy, nJ  10-25 60-100 10000
Pulse Duration, fs  50 30 <30
Long Term Power Stability****, % 1
Polarization  Linear, >100:1 
Beam Mode Quality, M2  ≤1.2 
Beam Waist Diameter (FW, 1/e2), mm   1.5 ± 0.5 
Beam Divergence, mrad <0.5 
Warm Up Time, min 15-30

* Standard models have customer selected fixed central wavelength within 2.1-2.6 μm range. Wavelength tuning option available upon request.
**Higher average output power models up to 20 W are available upon request.
** Custom repetition rates are available upon request.
*** After 1 hour warm up, over 2 hours, ambient T ± 2°C

Integrated Pump Laser* IPG CW Erbium Fiber Laser

Pump Laser Dimensions (W × H × D), mm

448 × 403 × 132
Optical Head Dimensions (W × D × H), mm 170 × 450 × 150
Supply Voltage 50-60 Hz, VAC 110-240

Power Consumption**, W

200 typ.

* Pump laser model depends on combination of parameters.
** Electrical power consumption depends on the maximum output power of the laser.


CLPF and CLPFT Series DatasheetCLPF-2500-SC IDFG Series DatasheetCLPF-2500-FC Series Datasheet


Multi-photon Imaging Biomedical Applications
Supercontinuum Generation High-harmonic Generation
Spectroscopy Mid-IR OPO Pumping
Metrology Mid-IR Frequency Combs

CLPF Modelocked Head

CLPF Modelocked Head Drawing

 characterization of high-harmonic emission  

Characterization of High-Harmonic Emission from ZnO up to 11 eV Pumped with a Cr:ZnS High-Repetition-Rate Source

We report the measurement of high-order harmonics from a ZnO crystal with photon energies up to 11 eV generated by a high-repetition-rate femtosecond Cr:ZnS laser operating in the mid-infrared at 2–3 μm, delivering few-cycle pulses with multi-watt average power and multi-megawatt peak power. High-focus intensity is achieved in a single pass through the crystal without a buildup cavity or nanostructued pattern for field enhancement. We measure in excess of 108 high-harmonic photons/second.

Giulio Vampa, Sergey Vasilyev, Hanzhe Liu, Mike Mirov, Philip H. Bucksbaum, and David A. Reis January 2019, Optics Letters


 octave spanning   Octave-spanning Cr:ZnS femtosecond laser with intrinsic nonlinear interferometry

We report a few-cycle, super-octave, polycrystalline Cr:ZnS laser system with 4 W power at 78 MHz repetition rate, where all of the necessary optical signals for the measurement of the carrier–envelope offset frequency are generated intrinsically.

January 2019, Optica

Sergey Vasilyev, Igor Moskalev, Viktor Smolski, Jeremy Peppers, Mike Mirov, Vladimir Fedorov, Dmitry Martyshkin, Sergey Mirov, and Valentin Gapontsev


 Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses   Super-Octave Longwave Mid-Infrared Coherent Transients Produced By Optical Rectification of Few-Cycle 2.5-μm Pulses

Femtosecond laser sources and optical frequency combs in the molecular fingerprint region of the electromagnetic spectrum are crucial for a plethora of applications in natural and life sciences. Here we introduce Cr:ZnS lases as a convenient means for producing super-octave mid-IR electromagnetic transients via optical rectification (or intra-pulse difference frequency generation, IDFG). The results highlight the potential of this architecture for ultrafast spectroscopy and generation of broadband frequency combs in the longwave infrared.

January 2019, Optica

Sergey Vasilyev, Igor S. Moskalev, Viktor O. Smolski, Jeremy M. Peppers, Mike Mirov, Andrey v. Muraviev, Kevin Zawilski, Peter G. Schunemann, Sergey B. Mirov, Konstantin L. Vodopyanov, and Valentin P. Gapontsev


 Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides  

Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides

TM ion doped II-VI semiconductors have been extensively studied since the 1960s by many research groups. However, the lasing of a Cr:ZnSe crystal was first reported in 1996 by scientists from Lawrence Livermore National Laboratory. In this publication, the authors formulated the major features that make these materials so attractive for middle infrared (MIR) laser applications.

September/October 2018, IEEE Journal of Selected Topics in Quantum Electronics

Sergey B. Mirov, Member, IEEE, Igor S. Moskalev, Sergey Vasilyev, Viktor Smolski, Vladimir v. Fedorov, Dmitry Martyshkin, Jeremy Peppers, Mike Mirov, Alex Dergachev, and Valentin Gapontsev



Mid-IR Lasers: Kerr-lens mode-locking in polycrystalline Cr:ZnS and Cr:ZnSe competes with Ti:sapphire

Kerr-lens mode-locking of polycrystalline chromium-doped zinc sulfide and zinc selenide leads to multiwatt output power, pulse durations approaching three optical cycles, and three-wave-mixing effects.

May 2015, Laser Focus World

Sergey Vasilyev, Mikhail Mirov, and Valentin Gapontsev

For your convenience, we have sales offices in many locations. Here you can contact our Sales Force, request literature, ask us a question.